Student's Name: Student's Name:

Lab day \& time: \qquad

Date: \qquad

Alternating Current Circuits (E6B) - Data Sheets

Write all results on the data sheets in ink.

Activity 1: Time Constant for RL Circuits

1.2. Read the exact value of the DC voltage V (should be close to 4.50 V) and the maximum value of the current $I_{\max }$.

$$
V=\ldots \text { () } \quad I_{\max }=\ldots \text { () }
$$

Use Ohm's law to calculate the resistance (R) of the coil and the 10.0Ω resistor connected in series.

$$
R=R_{\text {total }}=R_{\text {resistor }}+R_{\text {coil }}=\quad\left(\quad R_{\text {resistor }}=10.0(\Omega)\right.
$$

The resistance of the coil attached to the "RLC Circuit" board.

$$
R_{\text {coil }}=
$$

1.4. To select points that computer needs for the fit click anywhere on the "Current in the Coil" graph to make it active and use the "Highlight range of points" tool $: \begin{aligned} & \text {. The fitting }\end{aligned}$ parameter " B " for the coil and 10.0Ω resistor connected in series.

$$
" B "=\quad(\quad) \quad I(t)=A * \exp (-B t)
$$

What is the unit for the fitting parameter " B "?
Print the graph for 10.0Ω resistor and label it "Time constant \#1".
The time constant τ for the RL circuit

$$
\tau_{l}=
$$

\qquad $(\quad)=L_{l} / R_{\text {total }}$
1.5. The inductance of the coil attached to the RLC board $L_{I}=$ \qquad ()
1.6. Calculate the potential energy $P E_{\text {ind }}$ stored in the coil's magnetic field when the current is running through the coil and 10.0Ω resistor (before the external voltage is turned off). Use
equation (5) and the average value of the coil inductance $L_{A V}$. The current $I_{\max }$ was measured in step 1.2.

$$
P E_{\text {ind }}=
$$

1.7. Calculate the resistance R in the RL circuit.

$$
R_{\text {resistor }}=33.0(\Omega) \quad R=R_{\text {total }}=R_{\text {resistor }}+R_{\text {coil }}=
$$

1.8. The fitting parameter

$$
" B "=
$$

\qquad ()

The time constant τ for the RL circuit

$$
\tau_{2}=
$$

\qquad $(\quad)=L_{2} / R_{\text {total }}$ The inductance of the coil attached to the RLC board $\quad L_{2}=$ \qquad () Should the value of inductance L_{2} be similar to the inductance measured using the RL circuit with 10.0Ω resistor $\left(L_{I}\right)$? \qquad
1.9. Calculate the average value of the coil inductance $L_{A V}$.

$$
L_{A V}=\left(L_{1}+L_{2}\right) / 2=
$$

1.10. Calculate the potential energy $P E_{\text {ind }}$ stored in the coil's magnetic field when the current is running through the coil and 33.0Ω resistor (before the external voltage is turned off). Use equation (5) and the average value of the coil inductance $L_{A V}$. The current $I_{\max }$ was measured in step 1.2.

$$
\begin{equation*}
P E_{\text {ind }}=\frac{1}{2} L_{A V} I_{\text {max }}^{2}= \tag{J}
\end{equation*}
$$

\qquad

Activity 2: Impedance as a Function of Frequency for RL Circuits

The RL circuit includes now:

- $R_{\text {resistor }}=10.0 \Omega$;
- a coil with inductance $L_{A V}$ and resistance $R_{\text {coil }}$ (measured in the previous Activity);
- no capacitors.
2.1. Calculate the resistance R in the RL circuit. Use the value of the coil resistance $R_{\text {coil }}$ from Activity 1.

$$
R_{\text {resistor }}=10.0(\Omega) \quad R=R_{\text {resistor }}+R_{\text {coil }}=
$$

\qquad ()
2.3. Use equation (10) to describe what would be the expected change in the impedance Z when the frequency f increases. You need to analyze parts of the equation and explain how they contribute to the conclusion, which could be: an increase of the impedance or a decrease of the impedance.
\qquad
\qquad
\qquad
\qquad
2.4. Read and record the amplitude of current - "Maximum Current" and the amplitude of voltage - "Maximum Voltage" (this should be very close to 4.5 V). Calculate the measured value of the impedance Z using Eq. (8).

Frequency $f(\mathrm{~Hz})$	Voltage Amplitude $V_{\max }(\mathrm{V})$	Current Amplitude $I_{\max }(\mathrm{A})$	Measured Impedance $Z(\Omega)$
100			
200			
300			
400			
500			
600			
800			
1000			

2.5. Change the frequency f to the next value in the table and repeat measurements.

The RC circuit includes now:

- $R_{\text {resistor }}=33.0 \Omega$;
- no coil; Inductance: $L=0$ (H)
- $C=100 \mu \mathrm{~F}$ capacitor.
3.1. Calculate the resistance R in the RC circuit.

$$
R=R_{\text {resistor }}=33.0(\Omega) \quad \text { (no coil in the circuit) }
$$

Capacitance: $C=100(\mu \mathrm{~F})$
Inductance: $\quad L=0(\mathrm{H})$ - the coil is bypassed with a jumper cable
3.3. Use equation (13) to describe what would be the expected change in the impedance Z when the frequency f increases. You need to analyze parts of the equation and explain how they contribute to the conclusion, which could be: an increase of the impedance or a decrease of the impedance.
\qquad
\qquad
\qquad
3.4. Read and record the amplitude of current - "Maximum Current" and the amplitude of voltage - "Maximum Voltage" (this should be very close to 5.0 V). Calculate the measured value of the impedance Z using Eq. (8).

Frequency $f(\mathrm{~Hz})$	Voltage Amplitude $V_{\max }(\mathrm{V})$	Current Amplitude $I_{\max }(\mathrm{A})$	Measured Impedance $Z(\Omega)$
10			
20			
30			
40			
50			
60			
80			

100			
150			
200			

Activity 4: Resonance in RLC Circuits

This time the RLC circuit includes:

- no external resistors;
- a coil with inductance $L_{A V}$ and resistance $R_{\text {coil }}$;
- $C=100 \mu \mathrm{~F}$ capacitor.
4.1. Remove the "bypass" wire connecting terminals A and B. Calculate the resistance R in the single-loop RLC circuit. Move the wire from terminal \mathbf{D} to terminal \mathbf{A} on the board.
$R_{\text {resistor }}=0(\Omega) \quad R=R_{\text {coil }}=\ldots\left(\quad\right.$ (no external resistors) $\quad R_{\text {coil }}$ was measured in Activity 1.

Capacitance: $C=100(\mu \mathrm{~F}) \quad$ Inductance: $L=L_{A V}=$ \qquad ()
4.3. Read and record the amplitude of current - "Maximum Current" and the amplitude of voltage - "Maximum Voltage" (this should be very close to 1.50 V). Calculate the measured value of the impedance Z using Eq. (8).

Frequency $f(\mathrm{~Hz})$	Voltage Amplitude $V_{\max }(\mathrm{V})$	Current Amplitude $I_{\max }(\mathrm{A})$	Measured Impedance $Z(\Omega)$
100			
120			
140			
160			
170			
180			

190			
200			
220			
240			
260			
280			

4.4. Change the frequency f to the next value $(120 \mathrm{~Hz})$ and repeat measurements and calculations listed in step 4.3.
4.5. \quad Prepare a graph of the measured impedance Z versus the frequency f. Print the graph and attach it to your lab report. Find the frequency that corresponds to the minimum impedance, i.e., find the resonance frequency $f_{\text {res }}$.

$$
f_{\text {res }}=\ldots(\quad)
$$

4.6. Calculate the theoretical value of the resonance frequency f_{0} according to Eq. (17).

$$
f_{0}=
$$

Calculate the percent difference between the measured resonance frequency $f_{\text {res }}$ and the theoretical resonance frequency f_{0}.

$$
\frac{\left|f_{\text {res }}-f_{0}\right|}{f_{0}} \times 100 \%=
$$

\qquad (\%)
4.7. Disconnect all wires from the "RLC Circuit" board.

